Supervised ranking framework for relationship prediction in heterogeneous information networks

作者:Wenxin Liang, Xiao Li, Xiaosong He, Xinyue Liu, Xianchao Zhang

摘要

In recent years, relationship prediction in heterogeneous information networks (HINs) has become an active topic. The most essential part of this task is how to effectively represent and utilize the important three kinds of information hidden in connections of the network, namely local structure information (Local-info), global structure information (Global-info) and attribute information (Attr-info). Although all the information indicates different features of the network and influence relationship creation in a complementary way, existing approaches utilize them separately or in a partially combined way. In this article, a novel framework named Supervised Ranking framework (S-Rank) is proposed to tackle this issue. To avoid the class imbalance problem, in S-Rank framework we treat the relationship prediction problem as a ranking task and divide it into three phases. Firstly, a Supervised PageRank strategy (SPR) is proposed to rank the candidate nodes according to Global-info and Attr-info. Secondly, a Meta Path-based Ranking method (MPR) utilizing Local-info is proposed to rank the candidate nodes based on their meta path-based features. Finally, the two ranking scores are linearly integrated into the final ranking result which combines all the Attr-info, Global-info and Local-info together. Experiments on DBLP data demonstrate that the proposed S-Rank framework can effectively take advantage of all the three kinds of information for relationship prediction over HINs and outperforms other well-known baseline approaches.

论文关键词:Relationship prediction, Ranking strategy, Meta path, Heterogeneous information networks

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-017-1044-7