Improving semi-supervised co-forest algorithm in evolving data streams

作者:Yi Wang, Tao Li

摘要

Semi-supervised learning, which uses a large amount of unlabeled data to improve the performance of a classifier when only a limited amount of labeled data is available, has become a hot topic in machine learning research recently. In this paper, we propose a semi-supervised ensemble of classifiers approach, for learning in time-varying data streams. This algorithm maintains all the desirable properties of the semi-supervised Co-trained random FOREST algorithm (Co-Forest) and extends it into evolving data streams. It assigns a weight to each example according to Poisson(1) to simulate the bootstrap sample method in data streams, which is used to keep the diversity of Random Forest. By utilizing incremental learning technology, it avoids unnecessary repetition training and improves the accuracy of base models. In addition, the ADaptive WINdowing (ADWIN2) is introduced to deal with concept drift, which makes it adapt to the varying environment. Empirical evaluation on both synthetic data and UCI data reveals that our proposed method outperforms state-of-the-art semi-supervised and supervised methods in time-varying data streams, and also achieves relatively high performance in stationary streams.

论文关键词:Machine learning, Semi-supervised learning, Co-Forest, Data stream classification, Ensemble learning

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-018-1149-7