Structured block diagonal representation for subspace clustering
作者:Maoshan Liu, Yan Wang, Jun Sun, Zhicheng Ji
摘要
The aim of the subspace clustering is to segment the high-dimensional data into the corresponding subspace. The structured sparse subspace clustering and the block diagonal representation clustering are quite advanced spectral-type subspace clustering algorithms when handling to the linear subspaces. In this paper, the respective advantages of these two algorithms are fully exploited, and the structured block diagonal representation (SBDR) subspace clustering is proposed. In many classical spectral-type subspace clustering algorithms, the affinity matrix which obeys the block diagonal property can not necessarily bring satisfying clustering results. However, the k-block diagonal regularizer of the SBDR algorithm directly pursues the block diagonal matrix, and this regularizer is obviously more effective. On the other hand, the general procedure of the spectral-type subspace clustering algorithm is to get the affinity matrix firstly and next perform the spectral clustering. The SBDR algorithm considers the intrinsic relationship of the two seemingly separate steps, the subspace structure matrix obtained by the spectral clustering is used iteratively to facilitate a better initialization for the representation matrix. The experimental results on the synthetic dataset and the real dataset have demonstrated the superior performance of the proposed algorithm over other prevalent subspace clustering algorithms.
论文关键词:Subspace clustering, Structured sparse subspace clustering, Block diagonal representation, Structured block diagonal representation
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-020-01629-z