Intelligent system for COVID-19 prognosis: a state-of-the-art survey
作者:Janmenjoy Nayak, Bighnaraj Naik, Paidi Dinesh, Kanithi Vakula, B. Kameswara Rao, Weiping Ding, Danilo Pelusi
摘要
This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus 2019 (COVID-19) has been treated as a Public Health crisis of global Concern by the World Health Organization (WHO). Various outbreak models for COVID-19 are being utilized by researchers throughout the world to get well-versed decisions and impose significant control measures. Amid the standard methods for COVID-19 worldwide epidemic prediction, easy statistical, as well as epidemiological methods have got more consideration by researchers and authorities. One main difficulty in controlling the spreading of COVID-19 is the inadequacy and lack of medical tests for detecting as well as identifying a solution. To solve this problem, a few statistical-based advances are being enhanced and turn into a partial resolution up-to some level. To deal with the challenges of the medical field, a broad range of intelligent based methods, frameworks, and equipment have been recommended by Machine Learning (ML) and Deep Learning. As ML and DL have the ability of identifying and predicting patterns in complex large datasets, they are recognized as a suitable procedure for producing effective solutions for the diagnosis of COVID-19. In this paper, a perspective research has been conducted in the applicability of intelligent systems such as ML, DL and others in solving COVID-19 related outbreak issues. The main intention behind this study is (i) to understand the importance of intelligent approaches such as ML and DL for COVID-19 pandemic, (ii) discussing the efficiency and impact of these methods in the prognosis of COVID-19, (iii) the growth in the development of type of ML and advanced ML methods for COVID-19 prognosis,(iv) analyzing the impact of data types and the nature of data along with challenges in processing the data for COVID-19,(v) to focus on some future challenges in COVID-19 prognosis to inspire the researchers for innovating and enhancing their knowledge and research on other impacted sectors due to COVID-19.
论文关键词:COVID-19, Machine learning, Deep learning, Mathematical model, Intelligent system
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-020-02102-7