A new parameter reduction algorithm for soft sets based on chi-square test

作者:Hongwu Qin, Qinghua Fei, Xiuqin Ma, Wanghu Chen

摘要

Redundancy is an extremely significant challenge in data integration and decision making based on the model of soft set which is able to process data under uncertainty. There are four available methods which are designed to reduce the redundant parameters of the soft set. But there is a very low success rate on a large number of data sets obtained from practices by these methods. In order to overcome the inherent weakness, we propose a parameter reduction method based on chi square distribution for the model of soft set. Experimental results on two real-life application cases and thirty randomly generated data sets demonstrate that our algorithm largely improves the success rate of parameter reduction, redundant degree of parameter, and has higher practicability in comparison with the four existing normal parameter reduction algorithms.

论文关键词:Soft set, Chi-square test, Redundancy, Parameter reduction

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-021-02265-x