Microblog summarization using self-adaptive multi-objective binary differential evolution
作者:Naveen Saini, Sriparna Saha, Pushpak Bhattacharyya
摘要
Social media platforms become paramount for gathering relevant information during the occurrence of any natural disaster. Twitter has emerged as a platform which is heavily used for the purpose of communication during disaster events. Therefore, it becomes necessary to design a technique which can summarize the relevant tweets and thus, can help in the decision-making process of disaster management authority. In this paper, the problem of summarizing the relevant tweets is posed as an optimization problem where a subset of tweets is selected using the search capability of multi-objective binary differential evolution (MOBDE) by optimizing different perspectives of the summary. MOBDE deals with a set of solutions in its population, and each solution encodes a subset of tweets. Three versions of the proposed approach, namely, MOOTS1, MOOTS2, and MOOTS3, are developed in this paper. They differ in the way of working and the adaptive selection of parameters. Recently developed self-organizing map based genetic operator is explored in the optimization process. Two measures capturing the similarity/dissimilarity between tweets, word mover distance and BM25 are explored in the optimization process. The proposed approaches are evaluated on four datasets related to disaster events containing only relevant tweets. It has been observed that all versions of the developed MOBDE framework outperform the state-of-the-art (SOA) techniques. In terms of improvements, our best-proposed approach (MOOST3) improves by 8.5% and 3.1% in terms of ROUGE− 2 and ROUGE−L, respectively, over the existing techniques and these improvements are further validated using statistical significance t-test.
论文关键词:Microblog summarization, Evolutionary algorithm (EA), Multi-objective optimization (MOO), Self-organizing map (SOM), Word mover distance
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-020-02178-1