COVID-CT-Mask-Net: prediction of COVID-19 from CT scans using regional features

作者:Aram Ter-Sarkisov

摘要

We present COVID-CT-Mask-Net model that predicts COVID-19 in chest CT scans. The model works in two stages: in the first stage, Mask R-CNN is trained to localize and detect two types of lesions in images. In the second stage, these detections are fused to classify the whole input image. To develop the solution for the three-class problem (COVID-19, Common Pneumonia and Control), we used the COVIDx-CT data split derived from the dataset of chest CT scans collected by China National Center for Bioinformation. We use 3000 images (about 5% of the train split of COVIDx-CT) to train the model. Without any complicated data normalization, balancing and regularization, and training only a small fraction of the model’s parameters, we achieve a 90.80% COVID-19 sensitivity, 91.62% Common Pneumonia sensitivity and 92.10% true negative rate (Control sensitivity), an overall accuracy of 91.66% and F1-score of 91.50% on the test data split with 21192 images, bringing the ratio of test to train data to 7.06. We also establish an important result that regional predictions (bounding boxes with confidence scores) detected by Mask R-CNN can be used to classify whole images. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.

论文关键词:Chest CT scans, Image segmentation, Image classification, COVID-19

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-021-02731-6