Forecasting the abnormal events at well drilling with machine learning
作者:Ekaterina Gurina, Nikita Klyuchnikov, Ksenia Antipova, Dmitry Koroteev
摘要
We present a data-driven and physics-informed algorithm for drilling accident forecasting. The core machine-learning algorithm uses the data from the drilling telemetry representing the time-series. We have developed a Bag-of-features representation of the time series that enables the algorithm to predict the probabilities of six types of drilling accidents in real-time. The machine-learning model is trained on the 125 past drilling accidents from 100 different Russian oil and gas wells. Validation shows that the model can forecast 70% of drilling accidents with a false positive rate equals to 40%. The model addresses partial prevention of the drilling accidents at the well construction.
论文关键词:Bag-of-features, Directional drilling, Machine learning, Classification, Telemetry
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-021-03013-x