Community-based anomaly detection in evolutionary networks
作者:Zhengzhang Chen, William Hendrix, Nagiza F. Samatova
摘要
Networks of dynamic systems, including social networks, the World Wide Web, climate networks, and biological networks, can be highly clustered. Detecting clusters, or communities, in such dynamic networks is an emerging area of research; however, less work has been done in terms of detecting community-based anomalies. While there has been some previous work on detecting anomalies in graph-based data, none of these anomaly detection approaches have considered an important property of evolutionary networks—their community structure. In this work, we present an approach to uncover community-based anomalies in evolutionary networks characterized by overlapping communities. We develop a parameter-free and scalable algorithm using a proposed representative-based technique to detect all six possible types of community-based anomalies: grown, shrunken, merged, split, born, and vanished communities. We detail the underlying theory required to guarantee the correctness of the algorithm. We measure the performance of the community-based anomaly detection algorithm by comparison to a non–representative-based algorithm on synthetic networks, and our experiments on synthetic datasets show that our algorithm achieves a runtime speedup of 11–46 over the baseline algorithm. We have also applied our algorithm to two real-world evolutionary networks, Food Web and Enron Email. Significant and informative community-based anomaly dynamics have been detected in both cases.
论文关键词:Anomaly detection, Time-varying graphs, Evolutionary analysis, Community detection, Community-based anomaly
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10844-011-0183-2