DART+: Direction-aware bichromatic reverse k nearest neighbor query processing in spatial databases
作者:Kyoung-Won Lee, Dong-Wan Choi, Chin-Wan Chung
摘要
This article presents a novel type of queries in spatial databases, called the direction-aware bichromatic reverse k nearest neighbor(DBRkNN) queries, which extend the bichromatic reverse nearest neighbor queries. Given two disjoint sets, P and S, of spatial objects, and a query object q in S, the DBRkNN query returns a subset P′ of P such that k nearest neighbors of each object in P′ include q and each object in P′ has a direction toward q within a pre-defined distance. We formally define the DBRkNN query, and then propose an efficient algorithm, called DART, for processing the DBRkNN query. Our method utilizes a grid-based index to cluster the spatial objects, and the B+-tree to index the direction angle. We adopt a filter-refinement framework that is widely used in many algorithms for reverse nearest neighbor queries. In the filtering step, DART eliminates all the objects that are away from the query object more than a pre-defined distance, or have an invalid direction angle. In the refinement step, remaining objects are verified whether the query object is actually one of the k nearest neighbors of them. As a major extension of DART, we also present an improved algorithm, called DART+, for DBRkNN queries. From extensive experiments with several datasets, we show that DART outperforms an R-tree-based naive algorithm in both indexing time and query processing time. In addition, our extension algorithm, DART+, also shows significantly better performance than DART.
论文关键词:Reverse nearest neighbor, Direction-aware, Query optimization
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10844-014-0326-3