Self-adaptive concurrent components
作者:Erik Österlund, Welf Löwe
摘要
Selecting the optimum component implementation variant is sometimes difficult since it depends on the component’s usage context at runtime, e.g., on the concurrency level of the application using the component, call sequences to the component, actual parameters, the hardware available etc. A conservative selection of implementation variants leads to suboptimal performance, e.g., if a component is conservatively implemented as thread-safe while during the actual execution it is only accessed from a single thread. In general, an optimal component implementation variant cannot be determined before runtime and a single optimal variant might not even exist since the usage contexts can change significantly over the runtime. We introduce self-adaptive concurrent components that automatically and dynamically change not only their internal representation and operation implementation variants but also their synchronization mechanism based on a possibly changing usage context. The most suitable variant is selected at runtime rather than at compile time. The decision is revised if the usage context changes, e.g., if a single-threaded context changes to a highly contended concurrent context. As a consequence, programmers can focus on the semantics of their systems and, e.g., conservatively use thread-safe components to ensure consistency of their data, while deferring implementation and optimization decisions to context-aware runtime optimizations. We demonstrate the effect on performance with self-adaptive concurrent queues, sets, and ordered sets. In all three cases, experimental evaluation shows close to optimal performance regardless of actual contention.
论文关键词:Context-aware composition, Self-adaptive components, Concurrent context
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10515-017-0219-0