Faults in deep reinforcement learning programs: a taxonomy and a detection approach
作者:Amin Nikanjam, Mohammad Mehdi Morovati, Foutse Khomh, Houssem Ben Braiek
摘要
A growing demand is witnessed in both industry and academia for employing Deep Learning (DL) in various domains to solve real-world problems. Deep reinforcement learning (DRL) is the application of DL in the domain of Reinforcement Learning. Like any software system, DRL applications can fail because of faults in their programs. In this paper, we present the first attempt to categorize faults occurring in DRL programs. We manually analyzed 761 artifacts of DRL programs (from Stack Overflow posts and GitHub issues) developed using well-known DRL frameworks (OpenAI Gym, Dopamine, Keras-rl, Tensorforce) and identified faults reported by developers/users. We labeled and taxonomized the identified faults through several rounds of discussions. The resulting taxonomy is validated using an online survey with 19 developers/researchers. To allow for the automatic detection of faults in DRL programs, we have defined a meta-model of DRL programs and developed DRLinter, a model-based fault detection approach that leverages static analysis and graph transformations. The execution flow of DRLinter consists in parsing a DRL program to generate a model conforming to our meta-model and applying detection rules on the model to identify faults occurrences. The effectiveness of DRLinter is evaluated using 21 synthetic and real faulty DRL programs. For synthetic samples, we injected faults observed in the analyzed artifacts from Stack Overflow and GitHub. The results show that DRLinter can successfully detect faults in both synthesized and real-world examples with a recall of 75% and a precision of 100%.
论文关键词:Deep reinforcement learning, Software testing, Fault detection, Graph transformations
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10515-021-00313-x