An efficient and scalable deformable model for virtual reality-based medical applications

作者:

Highlights:

摘要

Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

论文关键词:Virtual reality,Deformable simulation,Heuristic optimization,Simulated annealing,Haptic rendering,Medical simulations

论文评审过程:Received 1 April 2003, Revised 26 October 2003, Accepted 17 January 2004, Available online 10 May 2004.

论文官网地址:https://doi.org/10.1016/j.artmed.2004.01.013