Artificial neural network analysis of noisy visual field data in glaucoma
作者:
Highlights:
•
摘要
This paper reports on the application of an artificial neural network to the clinical analysis of ophthalmological data. In particular a 2-dimensional Kohonen self-organising feature map (SOM) is used to analyse visual field data from glaucoma patients. Importantly, the paper addresses the problem of how the SOM can be utilised to accommodate the noise within the data. This is a particularly important problem within longitudinal assessment, where detecting significant change is the crux of the problem in clinical diagnosis. Data from 737 glaucomatous visual field records (Humphrey Visual Field Analyzer, program 24–2) are used to train a SOM with 25 nodes organised on a square grid. The SOM clusters the data organising the output map such that fields with early and advanced loss are at extreme positions, with a continuum of change in place and extent of loss represented by the intervening nodes. For each SOM node 100 variants, generated by a computer simulation modelling the variability that might be expected in a glaucomatous eye, are also classified by the network to establish the extent of noise upon classification. Field change is then measured with respect to classification of a subsequent field, outside the area defined by the original field and its variants. The significant contribution of this paper is that the spatial analysis of the field data, which is provided by the SOM, has been augmented with noise analysis enhancing the visual representation of longitudinal data and enabling quantification of significant class change.
论文关键词:Glaucoma,Kohonen self-organising feature map,Variability,Visual fields,Noise
论文评审过程:Received 11 November 1996, Accepted 3 February 1997, Available online 20 May 1998.
论文官网地址:https://doi.org/10.1016/S0933-3657(97)00388-6