Fuzzy logic in computer-aided breast cancer diagnosis: analysis of lobulation1

作者:

Highlights:

摘要

This paper illustrates how a fuzzy logic approach can be used to formalize terms in the American College of Radiology (ACR) Breast Imaging Lexicon. In current practice, radiologists make a relatively subjective determination for many terms from the lexicon related to breast cancer diagnosis. Lobulation and microlobulation of nodules are two important features in the ACR lexicon. We offer an approach for formalizing the distinction of these features and also formalize the description of intermediate cases between lobulated and microlobulated masses. In this paper it is shown that fuzzy logic can be an effective tool in dealing with this kind of problem. The proposed formalization creates a basis for the next three steps: (i) extended verification with blinded comparison studies, (ii) the automatic extraction of the related primitives from the image, and (iii) the detection of lobulated and microlobulated masses based on these primitives.

论文关键词:Fuzzy logic,Feature formalization,Breast cancer,Image recognition,Neural networks

论文评审过程:Received 31 October 1996, Revised 20 January 1997, Accepted 15 February 1997, Available online 16 April 1999.

论文官网地址:https://doi.org/10.1016/S0933-3657(97)00021-3