Automatic microcalcification and cluster detection for digital and digitised mammograms
作者:
Highlights:
•
摘要
In this paper we present a knowledge-based approach for the automatic detection of microcalcifications and clusters in mammographic images. Our proposal is based on using local features extracted from a bank of filters to obtain a local description of the microcalcifications morphology. The developed approach performs an initial training step in order to automatically learn and select the most salient features, which are subsequently used in a boosted classifier to perform the detection of individual microcalcifications. Subsequently, the microcalcification detection method is extended in order to detect clusters. The validity of our approach is extensively demonstrated using two digitised databases and one full-field digital database. The experimental evaluation is performed in terms of ROC analysis for the microcalcification detection and FROC analysis for the cluster detection, resulting in better than 80% sensitivity at 1 false positive cluster per image.
论文关键词:Computer-aided detection,Mammography,Image analysis,Knowledge-based systems,Microcalcification cluster detection
论文评审过程:Received 22 August 2011, Revised 18 November 2011, Accepted 25 November 2011, Available online 3 December 2011.
论文官网地址:https://doi.org/10.1016/j.knosys.2011.11.021