Evaluation of classification algorithms for intrusion detection in MANETs

作者:

Highlights:

摘要

Mobile Ad hoc Networks (MANETs) are wireless networks without fixed infrastructure based on the cooperation of independent mobile nodes. The proliferation of these networks and their use in critical scenarios (like battlefield communications or vehicular networks) require new security mechanisms and policies to guarantee the integrity, confidentiality and availability of the data transmitted. Intrusion Detection Systems used in wired networks are inappropriate in this kind of networks since different vulnerabilities may appear due to resource constraints of the participating nodes and the nature of the communication. This article presents a comparison of the effectiveness of six different classifiers to detect malicious activities in MANETs. Results show that Genetic Programming and Support Vector Machines may help considerably in detecting malicious activities in MANETs.

论文关键词:MANET,Intrusion detection,Genetic Programming,Classification algorithms,Support Vector Machines

论文评审过程:Received 28 February 2012, Revised 26 May 2012, Accepted 28 June 2012, Available online 21 July 2012.

论文官网地址:https://doi.org/10.1016/j.knosys.2012.06.016