Attribute selection based on a new conditional entropy for incomplete decision systems
作者:
Highlights:
•
摘要
Shannon’s entropy and its variants have been applied to measure uncertainty in rough set theory from the viewpoint of information theory. However, few studies have been done on attribute selection in incomplete decision systems based on information-theoretical measurement of attribute importance. In this paper, we introduce a new form of conditional entropy to measure the importance of attributes in incomplete decision systems. Based on the introduced conditional entropy, we construct three attribute selection approaches, including an exhaustive search strategy approach, a greedy (heuristic) search strategy approach and a probabilistic search approach for incomplete decision systems. To test the effectiveness of these methods, experiments on several real-life incomplete data sets are conducted. The results indicate that two of these methods are effective for attribute selection in incomplete decision system.
论文关键词:Incomplete decision systems,Attribute selection,Conditional entropy,Rough set theory,Information theory
论文评审过程:Received 29 March 2012, Revised 20 August 2012, Accepted 30 October 2012, Available online 7 November 2012.
论文官网地址:https://doi.org/10.1016/j.knosys.2012.10.018