Profiting from an inefficient association football gambling market: Prediction, risk and uncertainty using Bayesian networks

作者:

Highlights:

摘要

We present a Bayesian network (BN) model for forecasting Association Football match outcomes. Both objective and subjective information are considered for prediction, and we demonstrate how probabilities transform at each level of model component, whereby predictive distributions follow hierarchical levels of Bayesian inference. The model was used to generate forecasts for each match of the 2011/2012 English Premier League (EPL) season, and forecasts were published online prior to the start of each match. Profitability, risk and uncertainty are evaluated by considering various unit-based betting procedures against published market odds. Compared to a previously published successful BN model, the model presented in this paper is less complex and is able to generate even more profitable returns.

论文关键词:Bayesian networks,Expert systems,Football betting,Football forecasts,Subjective information

论文评审过程:Received 4 December 2012, Revised 20 May 2013, Accepted 21 May 2013, Available online 4 June 2013.

论文官网地址:https://doi.org/10.1016/j.knosys.2013.05.008