The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers
作者:
Highlights:
•
摘要
Triangular intuitionistic fuzzy numbers (TIFNs) are a special intuitionistic fuzzy set (IFS) on a real number set, which are very useful for decision makers (DMs) to depict their fuzzy preference information. In this work, we investigate multiple attribute group decision-making (MAGDM) problems in which the ratings of alternatives are expressed with TIFNs, and the weights of the attributes and DMs are completely unknown. Firstly, the crisp weighted possibility mean of TIFNs is defined, and the Hamming distance and Euclidean distance for TIFNs are defined based on Hausdorff distance. The triangular intuitionistic fuzzy weighted average (TIF-WA) operator is developed. Then, the weights of attributes are calculated by applying Shannon entropy measure and the weights of DMs are determined objectively combining the evidence theory with Bayes approximation. The individual decision matrixes for all DMs are aggregated into the group decision matrix by using the TIF-WA operator. Thereby, the classic Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is extended for solving the MAGDM with TIFNs. Finally, the ranking order of alternative is given according to the closeness of alternative with respect to the ideal solution. The personnel selection example verifies the effectiveness of the proposed method.
论文关键词:Multi-attribute group decision making,Triangular intuitionistic fuzzy numbers,Shannon entropy measure,Evidence theory,VIKOR method
论文评审过程:Received 10 February 2013, Revised 29 June 2013, Accepted 30 June 2013, Available online 31 July 2013.
论文官网地址:https://doi.org/10.1016/j.knosys.2013.06.019