Replenish-up-to multi-chance-constraint inventory control system under fuzzy random lost-sale and backordered quantities

作者:

Highlights:

摘要

In this paper, a multiproduct multi-chance constraint stochastic inventory control problem is considered, in which the time-periods between two replenishments are assumed independent and identically distributed random variables. For the problem at hand, the decision variables are of integer-type, the service-level is a chance constraint for each product, and the space limitation is another constraint of the problem. Furthermore, shortages are allowed in the forms of fuzzy random quantities of lost sale that are backordered. The developed mathematical formulation of the problem is shown to be a fuzzy random integer-nonlinear programming model. The aim is to determine the maximum level of inventory for each product such that the total profit under budget and service level constraints is maximized. In order to solve the model, a hybrid method of fuzzy simulation, stochastic simulation, and particle swarm optimization approach (Hybrid FS–SS–PSO) is used. At the end, several numerical illustrations are given to demonstrate the applicability of the proposed methodology and to compare its performances with the ones of another hybrid algorithm as a combination of fuzzy simulation, stochastic simulation, and genetic algorithm (FS–SS–GA). The results of the numerical illustrations show that FS–SS–PSO performs better than FS–SS–GA in terms of both objective functions and CPU time.

论文关键词:Stochastic replenishment intervals,Inventory control,Partial back-ordering,Stochastic simulation,Fuzzy simulation,Particle swarm optimization,Genetic algorithm

论文评审过程:Received 15 June 2012, Revised 21 August 2013, Accepted 23 August 2013, Available online 30 August 2013.

论文官网地址:https://doi.org/10.1016/j.knosys.2013.08.027