ConSent: Context-based sentiment analysis

作者:

Highlights:

摘要

We present ConSent, a novel context-based approach for the task of sentiment analysis. Our approach builds on techniques from the field of information retrieval to identify key terms indicative of the existence of sentiment. We model these terms and the contexts in which they appear and use them to generate features for supervised learning. The two major strengths of the proposed model are its robustness against noise and the easy addition of features from multiple sources to the feature set. Empirical evaluation over multiple real-world domains demonstrates the merit of our approach, compared to state-of the art methods both in noiseless and noisy text.

论文关键词:Sentiment analysis,Context,Machine learning,Noisy data

论文评审过程:Received 1 December 2014, Revised 6 April 2015, Accepted 7 April 2015, Available online 12 April 2015, Version of Record 13 May 2015.

论文官网地址:https://doi.org/10.1016/j.knosys.2015.04.009