Spatially-variant noise filtering in magnetic resonance imaging: A consensus-based approach
作者:
Highlights:
•
摘要
In order to accelerate the acquisition process in multiple-coil Magnetic Resonance scanners, parallel techniques were developed. These techniques reduce the acquisition time via a sub-sampling of the k-space and a reconstruction process. From a signal and noise perspective, the use of a acceleration techniques modify the structure of the noise within the image. In the most common algorithms, like SENSE, the final magnitude image after the reconstruction is known to follow a Rician distribution for each pixel, just like single coil systems. However, the noise is spatially non-stationary, i.e. the variance of noise becomes x-dependent. This effect can also be found in magnitude images due to other processing inside the scanner. In this work we propose a method to adapt well-known noise filtering techniques initially designed to deal with stationary noise to the case of spatially variant Rician noise. The method copes with inaccurate estimates of variant noise patterns in the image, showing its robustness in realistic cases. The method employs a consensus strategy in conjunction with a set of aggregation functions and a penalty function. Multiple possible outputs are generated for each pixel assuming different unknown input parameters. The consensus approach merges them into a unique filtered image. As a filtering technique, we have selected the Linear Minimum Mean Square Error (LMMSE) estimator for Rician data, which has been used to test our methodology due to its simplicity and robustness. Results with synthetic and in vivo data confirm the good behavior of our approach.
论文关键词:MRI,Rician noise,SENSE,Non-stationary distributed noise,Consensus,Noise filtering
论文评审过程:Received 30 November 2015, Revised 25 May 2016, Accepted 26 May 2016, Available online 27 May 2016, Version of Record 18 June 2016.
论文官网地址:https://doi.org/10.1016/j.knosys.2016.05.053