Efficient sequential pattern mining with wildcards for keyphrase extraction
作者:
Highlights:
•
摘要
A keyphrase (a multi-word unit) in a document denotes one or multiple keywords capturing a main topic of the underlying document. Finding good keyphrases of a document can quickly summarize knowledge for efficient decision making and benefit domains involving intensive text information. To date, existing keyphrase extraction methods cannot be customized to each specific document, mainly because their patterns used to form paraphrases are too restrictive and may not capture flexible keyword relationships inside the text. In this paper, we propose a sequential pattern mining based document-specific keyphrase extraction method. Our key innovation is to use wildcards (or gap constraints) to help extract sequential patterns, so the flexible wildcard constraints within a pattern can capture semantic relationships between words, and the system will have full flexibility to discover different types of sequential patterns as candidates for keyphrase extraction. To achieve the goal, we regard each single document as a sequential dataset, and propose an efficient algorithm to mine sequential patterns with wildcard and one-off conditions that allows important keyphrases to be captured during the mining process. For each extracted keyphrase candidate, we use some statistical pattern features to characterize it, and further collect all keyphrases from the document to form a training set. A supervised learning classifier is trained to identify keyphrases from a test document. Because our pattern mining and pattern characterization processes are customized to each single document, keyphases extracted from our method are highly specific for each document. Experimental results demonstrate that the proposed sequential pattern mining method outperforms existing pattern mining methods in both runtime performance and completeness. Comparisons on keyphrase benchmark datasets also confirm that the proposed document-specific keyphrase extraction method is effective in improving the quality of extracted keyphrases.
论文关键词:Document summarization,Keyphrase extraction,Sequential pattern mining,Wildcards,Classification
论文评审过程:Received 24 December 2015, Revised 15 July 2016, Accepted 7 October 2016, Available online 20 October 2016, Version of Record 18 November 2016.
论文官网地址:https://doi.org/10.1016/j.knosys.2016.10.011