A parametrized approach for linear regression of interval data

作者:

Highlights:

摘要

Interval symbolic data is a complex data type that can often be obtained by summarizing large datasets. All existing linear regression approaches for interval data use certain fixed reference points to model intervals, such as midpoints, ranges and lower and upper bounds. This is a limitation, because different datasets might be better represented by different reference points. In this paper, we propose a new method for extracting knowledge from interval data. Our parametrized approach automatically extracts the best reference points from the regressor variables. These reference points are then used to build two linear regressions: one for the lower bounds of the response variable and another for its upper bounds. Before the regressions are applied, we compute a criterion to verify the mathematical coherence of predicted values. Mathematical coherence means that the upper bounds are greater than the lower bounds. If the criterion shows that the coherence is not guaranteed, we suggest the use of a novel interval Box-Cox transformation of the response variable. Experimental evaluations with synthetic and real interval datasets illustrate the advantages and the usefulness of the proposed method to perform interval linear regression.

论文关键词:Interval linear regression,Symbolic data analysis,Interval parametrization

论文评审过程:Received 19 January 2017, Revised 11 April 2017, Accepted 6 June 2017, Available online 8 June 2017, Version of Record 20 June 2017.

论文官网地址:https://doi.org/10.1016/j.knosys.2017.06.012