Unsupervised feature selection based on the Morisita estimator of intrinsic dimension
作者:
Highlights:
•
摘要
This paper deals with a new filter algorithm for selecting the smallest subset of features carrying all the information content of a dataset (i.e. for removing redundant features). It is an advanced version of the fractal dimension reduction technique, and it relies on the recently introduced Morisita estimator of Intrinsic Dimension (ID). Here, the ID is used to quantify dependencies between subsets of features, which allows the effective processing of highly non-linear data. The proposed algorithm is successfully tested on simulated and real world case studies. Different levels of sample size and noise are examined along with the variability of the results. In addition, a comprehensive procedure based on random forests shows that the data dimensionality is significantly reduced by the algorithm without loss of relevant information. And finally, comparisons with benchmark feature selection techniques demonstrate the promising performance of this new filter.
论文关键词:Unsupervised feature selection,Morisita index,Intrinsic dimension,Redundancy minimization,Data mining
论文评审过程:Received 14 December 2016, Revised 12 July 2017, Accepted 8 August 2017, Available online 9 August 2017, Version of Record 22 September 2017.
论文官网地址:https://doi.org/10.1016/j.knosys.2017.08.009