Augmented label propagation for seed set expansion
作者:
Highlights:
•
摘要
In many applications such as social network analysis and recommendation systems, it is of particular interest to identify a group of similar nodes/users/items. However, in networks of massive size, manual labeling process becomes intractable. A practical means is to mark a small number of nodes as seeds, and then expand them to the rest (unlabeled) ones, which is also known as seed set expansion. We present a novel method for seed set expansion by leveraging information spreading dynamics through label propagation. In particular, by devising an augmented, community-based label propagation, we can fully exploit the information of the limited seed nodes, and apply the connectivity structure of the whole network in imposing a larger number of constraints on the label propagation process, thus achieving an improved estimation. Our method can increase the effective number of seed nodes in that it can achieve a better estimation than other propagation methods using the same number of seeds. Extensive experiments on real-world datasets demonstrate the effectiveness and adaptiveness of our method, compared to the state-of-the-art approaches.
论文关键词:Seed set expansion,Networks,Label propagation
论文评审过程:Received 1 August 2018, Revised 7 May 2019, Accepted 8 May 2019, Available online 14 May 2019, Version of Record 12 June 2019.
论文官网地址:https://doi.org/10.1016/j.knosys.2019.05.010