Semi-supervised representation learning via dual autoencoders for domain adaptation

作者:

Highlights:

摘要

Domain adaptation aims to exploit the knowledge in source domain to promote the learning tasks in target domain, which plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved a significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source and target data together to learn global feature representations, while they do not consider the local relationship between instances in the same category from different domains. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDAad) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.

论文关键词:Domain adaptation,Dual autoencoders,Representation learning,Semi-supervised

论文评审过程:Received 19 April 2019, Revised 15 October 2019, Accepted 24 October 2019, Available online 30 October 2019, Version of Record 7 February 2020.

论文官网地址:https://doi.org/10.1016/j.knosys.2019.105161