Two-dimensional bandwidth minimization problem: Exact and heuristic approaches

作者:

Highlights:

摘要

Reducing the bandwidth in a graph is an optimization problem which has generated significant attention over time due to its practical application in Very Large Scale Integration (VLSI) layout designs, solving system of equations, or matrix decomposition, among others. The bandwidth problem is considered as a graph labeling problem where each vertex of the graph receives a unique label. The target consists in finding an embedding of the graph in a line, according to the labels assigned to each vertex, that minimizes the maximum distance between the labels of adjacent vertices. In this work, we are focused on a 2D variant where the graph has to be embedded in a two-dimensional grid instead. To solve it, we have designed two constructive and three local search methods which are integrated in a Basic Variable Neighborhood Search (BVNS) scheme. To assess their performance, we have designed three Constraint Satisfaction Problem (CSP) models. The experimental results show that our CSP models obtain remarkable results in small or medium size instances. On the other hand, BVNS is capable of reaching equal or similar results than the CSP models in a reduced run-time for small instances, and it can provide high quality solutions in those instances which are not optimally solvable with our CSP models.

论文关键词:Graph layout,Metaheuristics,Variable Neighborhood Search,GRASP,Constraint Programming Formulations

论文评审过程:Received 3 April 2020, Revised 12 November 2020, Accepted 2 December 2020, Available online 26 December 2020, Version of Record 5 January 2021.

论文官网地址:https://doi.org/10.1016/j.knosys.2020.106651