A nondestructive automatic defect detection method with pixelwise segmentation

作者:

Highlights:

摘要

Defect detection is essential for the quality control and repair decision-making of various products. Due to collisions, uneven stress, welding parameters and other factors, cracks form on the surface or inside of products, which affect the product appearance and mechanism strength and may even cause huge safety accidents. Nondestructive testing (NDT) is an effective and practical method for accurate defect detection, but it still faces various challenges against complex factors, such as complex backgrounds, poor contrast, weak texture, and class imbalance issues. Recently, deep learning has rapidly improved the performance of automatic defect detection with the strong feature expression ability of deep convolutional neural networks (DCNNs). However, various limitations remain due to the insufficient processing of local contextual features, which affects the detection precision. To address this issue, with the encoder–decoder network structure, a novel nondestructive defect detection network, namely, NDD-Net, is proposed in this paper to construct an end-to-end nondestructive defect segmentation scheme. To make the segmentation network better emphasize the defect areas, an attention fusion block (AFB) is proposed to replace the raw skip connections to acquire more discriminative features and enhance the segmentation performance on microdefects. Meanwhile, by fusing a dense connection convolution network and a residual network, a residual dense connection convolution block (RDCCB) is also proposed to be embedded into the proposed segmentation network to acquire richer information about the local feature maps. Two public datasets with severe class imbalance issues are adopted for model evaluation: the Grima X-ray (GDXray) database and the rail surface discrete defects (RSSDs) dataset. Experimental results show that the proposed segmentation network outperforms other related segmentation models.

论文关键词:Defect detection,Deep architecture,Image segmentation,Attention fusion,Residual dense connection convolution network

论文评审过程:Received 22 July 2021, Revised 10 December 2021, Accepted 28 January 2022, Available online 8 February 2022, Version of Record 19 February 2022.

论文官网地址:https://doi.org/10.1016/j.knosys.2022.108338