Integrated graphical approach to knowledge representation and acquisition

作者:

Highlights:

摘要

An approach toward improving the accessbility of the knowledge and information structures of expert systems is described; it is based upon a foundation development environment called the Rule-Based Frame System (RBFS), which forms the kernel of a larger system, IDEAS. RBFS is a knowledge representation language, within which a distinction is drawn between information which represents the world or domain, and knowledge which states how to make conclusions based upon the domain. Information takes the form of frames, for system processing, but is presented to the user/developer as an associative network via a Visual Editor for the Generation of Associative Networks (VEGAN). Knowledge takes the form of production rules, which are connected at suitable points in the domain model, but again it is presented to the user via a graphical interface known as the Knowledge Encoding Tool (KET). KET is designed to assist in knowledge acquisition in expert systems. It uses a combination of decision support trees and associative networks as its representation. A combined use of VEGAN and KET will enable domain experts to interactively create and test their knowledge base with minimum involvement on behalf of a knowledge engineer. An inclusion of learning features in VEGAN/KET is desirable for this purpose. The main objective of these tools, therefore, is to encourage rapid prototyping by the domain expert. VEGAN and KET are implemented in the Poplog environment on SUN 3/50 workstations.

论文关键词:knowledge representation,knowledge acquisition,expert system,knowledge engineer,domain knowledge,languages,RBFS,VEGAN,KET

论文评审过程:Available online 25 February 2003.

论文官网地址:https://doi.org/10.1016/0950-7051(88)90084-6