Neural network and GA approaches for dwelling fire occurrence prediction
作者:
Highlights:
•
摘要
This paper describes three approaches for the prediction of dwelling fire occurrences in Derbyshire, a region in the United Kingdom. The system has been designed to calculate the number of fire occurrences for each of the 189 wards in the Derbyshire. In terms of the results from statistical analysis, eight factors are initially selected as the inputs of the neural network. Principal Component Analysis (PCA) is employed for pre-processing the input data set to reduce the number of the inputs. The first three principal components of the available data set are chosen as the inputs, the number of the fires as the output. The first approach is a logistic regression model, which has been widely used in the forest fire prediction. The prediction results of the logistic regression model are not acceptable. The second approach uses a feed-forward neural network to model the relationship between the number of fires and the factors that influence fire occurrence. The model of the neural network gives a prediction with an acceptable accuracy for the fires in dwelling areas. Genetic algorithms (GAs) are the third approach discussed in this study. The first three principle components of the available data set are classified into the different groups according to their number of fires. An iterative GA is proposed and applied to extract features for each data group. Once the features for all the groups have been identified the test data set can be easily clustered into one of the groups based on the group features. The number of fires for the group, which the test data belongs to, is the prediction of the fire occurrence for the test data. The three approaches have been compared. Our results indicate that the neural network based and the GA based approaches perform satisfactorily, with MSEs of 2.375 and 2.875, respectively, but the GA approach is much better understood and more transparent.
论文关键词:Dwelling fire,Prediction,Neural network,Genetic algorithms,Principal component analysis
论文评审过程:Received 15 May 2003, Accepted 3 November 2005, Available online 17 February 2006.
论文官网地址:https://doi.org/10.1016/j.knosys.2005.11.021