Neural network based method for image halftoning and inverse halftoning
作者:
Highlights:
•
摘要
A hybrid neural network based method for halftoning and inverse halftoning of digital images is presented. The halftone image is performed by single-layer perceptron neural network (SLPNN), and its corresponding continuous-tone image is reconstructed by radial-basis function neural network (RBFNN). The combined training procedure produces halftone images and the corresponding continuous tone images at the same time. The PSNR performance and visual image quality of these contone images achieved is comparable to the well-known inverse halftoning methods. The resultant halftone images compared with the error diffusion halftone are visually good, too. Furthermore, we apply different kinds of halftone images to a bi-level image compression method, called Block Arithmetic Coding for Image Compression (BACIC), which is better than the current facsimile methods.
论文关键词:Halftone,Inverse halftoning,RBF neural network,SLP neural network
论文评审过程:Available online 18 April 2007.
论文官网地址:https://doi.org/10.1016/j.eswa.2007.04.013