Agent Mertacor: A robust design for dealing with uncertainty and variation in SCM environments

作者:

Highlights:

摘要

Supply Chain Management (SCM) has recently entered a new era, where the old-fashioned static, long-term relationships between involved actors are being replaced by new, dynamic negotiating schemas, established over virtual organizations and trading marketplaces. SCM environments now operate under strict policies that all interested parties (suppliers, manufacturers, customers) have to abide by, in order to participate. And, though such dynamic markets provide greater profit potential, they also conceal greater risks, since competition is tougher and request and demand may vary significantly in the quest for maximum benefit. The need for efficient SCM actors is thus implied, actors that may handle the deluge of (either complete or incomplete) information generated, perceive variations and exploit the full potential of the environments they inhabit. In this context, we introduce Mertacor, an agent that employs robust mechanisms for dealing with all SCM facets and for trading within dynamic and competitive SCM environments. Its efficiency has been extensively tested in one of the most challenging SCM environments, the Trading Agent Competition (TAC) SCM game. This paper provides an extensive analysis of Mertacor and its main architectural primitives, provides an overview of the TAC SCM environment, and thoroughly discusses Mertacor’s performance.

论文关键词:Supply Chain Management,Machine learning,Autonomous trading agents,Electronic commerce,Agent intelligence

论文评审过程:Available online 26 July 2007.

论文官网地址:https://doi.org/10.1016/j.eswa.2007.07.050