EQOWSN: Evolutionary-based query optimization over self-organized wireless sensor networks

作者:

Highlights:

摘要

In this paper, a new approach has been introduced that integrates an evolutionary-based mechanism with a distributed query sensor cover algorithm for optimal query execution in self-organized wireless sensor networks (WSN). An algorithm based on an evolutionary technique is proposed, with problem-specific genetic operators to improve computing efficiency. Redundancy within a sensor network can be exploited to reduce the communication cost incurred in execution of spatial queries. Any reduction in communication cost would result in an efficient use of battery energy, which is very limited in sensors. Our objective is to self-organize the network, in response to a query, into a topology that involves an optimal subset of sensors that is sufficient to process the query subject to connectivity, coverage, energy consumption, cover size and communication overhead constraints. Query processing must incorporate energy awareness into the system by reducing the total energy consumption and hence increasing the lifetime of the sensor cover, which is beneficial for large long running queries. Experiments have been carried out on networks with different sensors Transmission radius, different query sizes, and different network configurations. Through extensive simulations, we have shown that our designed technique result in substantial energy savings in a sensor network. Compared with other techniques, the results demonstrated a significant improvement of the proposed technique in terms of energy-efficient query cover with lower communication cost and lower size.

论文关键词:Wireless sensor network,Query cover,Energy consumption,Redundancy

论文评审过程:Available online 18 October 2007.

论文官网地址:https://doi.org/10.1016/j.eswa.2007.09.062