A new approach for epileptic seizure detection using adaptive neural network
作者:
Highlights:
•
摘要
This paper presents new neural network models with adaptive activation function (NNAAF) to detect epileptic seizure. Our NNAAF models included three types named as NNAAF-1, NNAAF-2 and NNAAF-3. The activation function of hidden neuron in the model of NNAAF-1 is sigmoid function with free parameters. In the second model, NNAAF-2, activation function of hidden neuron is sum of sigmoid function with free parameters and sinusoidal function with free parameters. In the third model, NNAAF-3, hidden neurons’ activation function is Morlet Wavelet function with free parameters. In addition, we implemented traditional multilayer perceptron (MLP) neural network (NN) model with fixed sigmoid activation function in the hidden layer to compare NNAAF models. The proposed models were trained and tested using 5-fold cross-validation to prove robustness of these models and to find the best model. We achieved 100% average sensitivity, average specificity, and approximately 100% average classification rate in all the models. It was seen that their speeds and the number of maximum iteration were changed for each model. The training time and the number of maximum iteration were reduced on about 50% using NNAAF-3 model. Hence it can be remarkable that NNAAF-3 is more suitable than the other models for real-time application.
论文关键词:Adaptive neural network,Adaptive activation function,MLP,Epileptic seizure,Detection,EEG
论文评审过程:Available online 1 October 2007.
论文官网地址:https://doi.org/10.1016/j.eswa.2007.09.007