Online updating belief rule based system for pipeline leak detection under expert intervention
作者:
Highlights:
•
摘要
A belief rule base inference methodology using the evidential reasoning approach (RIMER) has been developed recently, where a new belief rule base (BRB) is proposed to extend traditional IF-THEN rules and can capture more complicated causal relationships using different types of information with uncertainties, but these models are trained off-line and it is very expensive to train and re-train them. As such, recursive algorithms have been developed to update the BRB systems online and their calculation speed is very high, which is very important, particularly for the systems that have a high level of real-time requirement. The optimization models and recursive algorithms have been used for pipeline leak detection. However, because the proposed algorithms are both locally optimal and there may exist some noise in the real engineering systems, the trained or updated BRB may violate some certain running patterns that the pipeline leak should follow. These patterns can be determined by human experts according to some basic physical principles and the historical information. Therefore, this paper describes under expert intervention, how the recursive algorithm update the BRB system so that the updated BRB cannot only be used for pipeline leak detection but also satisfy the given patterns. Pipeline operations under different conditions are modeled by a BRB using expert knowledge, which is then updated and fine tuned using the proposed recursive algorithm and pipeline operating data, and validated by testing data. All training and testing data are collected from a real pipeline. The study demonstrates that under expert intervention, the BRB expert system is flexible, can be automatically tuned to represent complicated expert systems, and may be applied widely in engineering. It is also demonstrated that compared with other methods such as fuzzy neural networks (FNNs), the RIMER has a special characteristic of allowing direct intervention of human experts in deciding the internal structure and the parameters of a BRB expert system.
论文关键词:Belief rule base,Expert system,Evidential reasoning,Recursive algorithm,Leak detection
论文评审过程:Available online 23 September 2008.
论文官网地址:https://doi.org/10.1016/j.eswa.2008.09.032