A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis
作者:
Highlights:
•
摘要
It is well known that data mining is a process of discovering unknown, hidden information from a large amount of data, extracting valuable information, and using the information to make important business decisions. And data mining has been developed into a new information technology, including regression, decision tree, neural network, fuzzy set, rough set, and support vector machine. This paper puts forward a rough set-based multiple criteria linear programming (RS-MCLP) approach for solving classification problems in data mining. Firstly, we describe the basic theory and models of rough set and multiple criteria linear programming (MCLP) and analyse their characteristics and advantages in practical applications. Secondly, detailed analysis about their deficiencies are provided, respectively. However, because of the existing mutual complementarities between them, we put forward and build the RS-MCLP methods and models which sufficiently integrate their virtues and overcome the adverse factors simultaneously. In addition, we also develop and implement these algorithm and models in SAS and Windows system platforms. Finally, many experiments show that the RS-MCLP approach is prior to single MCLP model and other traditional classification methods in data mining, and remarkably improve the accuracy of medical diagnosis and prognosis simultaneously.
论文关键词:Data mining,Rough set,Multiple criteria linear programming,Classification
论文评审过程:Available online 24 November 2008.
论文官网地址:https://doi.org/10.1016/j.eswa.2008.11.007