Evolutionary algorithms based design of multivariable PID controller

作者:

Highlights:

摘要

In this paper, performance comparison of evolutionary algorithms (EAs) such as real coded genetic algorithm (RGA), modified particle swarm optimization (MPSO), covariance matrix adaptation evolution strategy (CMAES) and differential evolution (DE) on optimal design of multivariable PID controller design is considered. Decoupled multivariable PI and PID controller structure for Binary distillation column plant described by Wood and Berry, having 2 inputs and 2 outputs is taken. EAs simulations are carried with minimization of IAE as objective using two types of stopping criteria, namely, maximum number of functional evaluations (Fevalmax) and Fevalmax along with tolerance of PID parameters and IAE. To compare the performances of various EAs, statistical measures like best, mean, standard deviation of results and average computation time, over 20 independent trials are considered. Results obtained by various EAs are compared with previously reported results using BLT and GA with multi-crossover approach. Results clearly indicate the better performance of CMAES and MPSO designed PI/PID controller on multivariable system. Simulations also reveal that all the four algorithms considered are suitable for off-line tuning of PID controller. However, only CMAES and MPSO algorithms are suitable for on-line tuning of PID due to their better consistency and minimum computation time.

论文关键词:PID Control,Evolutionary algorithm,MIMO system,On-line tuning,Off-line tuning

论文评审过程:Available online 24 December 2008.

论文官网地址:https://doi.org/10.1016/j.eswa.2008.12.033