A collaborative desktop tagging system for group knowledge management based on concept space

作者:

Highlights:

摘要

The advent of internet has led to a significant growth in the amount of information available, resulting in information overload, i.e. individuals have too much information to make a decision. To resolve this problem, collaborative tagging systems form a categorization called folksonomy in order to organize web resources. A folksonomy aggregates the results of personal free tagging of information and objects to form a categorization structure that applies utilizes the collective intelligence of crowds. Folksonomy is more appropriate for organizing huge amounts of information on the Web than traditional taxonomies established by expert cataloguers. However, the attributes of collaborative tagging systems and their folksonomy make them impractical for organizing resources in personal environments.This work designs a desktop collaborative tagging (DCT) system that enables collaborative workers to tag their documents. This work proposes an application in patent analysis based on the DCT system. Folksonomy in DCT is built by aggregating personal tagging results, and is represented by a concept space. Concept spaces provide synonym control, tag recommendation and relevant search. Additionally, to protect privacy of authors and to decrease the transmission cost, relations between tagged and untagged documents are constructed by extracting document’s features rather than adopting the full text.Experimental results reveal that the adoption rate of recommended tags for new documents increases by 10% after users have tagged five or six documents. Furthermore, DCT can recommend tags with higher adoption rates when given new documents with similar topics to previously tagged ones. The relevant search in DCT is observed to be superior to keyword search when adopting frequently used tags as queries. The average precision, recall, and F-measure of DCT are 12.12%, 23.08%, and 26.92% higher than those of keyword searching.DCT allows a multi-faceted categorization of resources for collaborative workers and recommends tags for categorizing resources to simplify categorization easier. Additionally, DCT system provides relevance searching, which is more effective than traditional keyword searching for searching personal resources.

论文关键词:Tagging,Collaborative tagging,Folksonomy,Concept space,Personal information management

论文评审过程:Available online 24 December 2008.

论文官网地址:https://doi.org/10.1016/j.eswa.2008.12.042