Using the self organizing map for clustering of text documents

作者:

Highlights:

摘要

An increasing number of computational and statistical approaches have been used for text classification, including nearest-neighbor classification, naïve Bayes classification, support vector machines, decision tree induction, rule induction, and artificial neural networks. Among these approaches, naïve Bayes classifiers have been widely used because of its simplicity. Due to the simplicity of the Bayes formula, the naïve Bayes classification algorithm requires a relatively small number of training data and shorter time in both the training and classification stages as compared to other classifiers. However, a major short coming of this technique is the fact that the classifier will pick the highest probability category as the one to which the document is annotated too. Doing this is tantamount to classifying using only one dimension of a multi-dimensional data set. The main aim of this work is to utilize the strengths of the self organizing map (SOM) to overcome the inadvertent dimensionality reduction resulting from using only the Bayes formula to classify. Combining the hybrid system with new ranking techniques further improves the performance of the proposed document classification approach. This work describes the implementation of an enhanced hybrid classification approach which affords a better classification accuracy through the utilization of two familiar algorithms, the naïve Bayes classification algorithm which is used to vectorize the document using a probability distribution and the self organizing map (SOM) clustering algorithm which is used as the multi-dimensional unsupervised classifier.

论文关键词:Bayesian,Self organizing maps,Clusters similarity

论文评审过程:Available online 31 July 2008.

论文官网地址:https://doi.org/10.1016/j.eswa.2008.07.082