A new feature selection method on classification of medical datasets: Kernel F-score feature selection
作者:
Highlights:
•
摘要
In this paper, we have proposed a new feature selection method called kernel F-score feature selection (KFFS) used as pre-processing step in the classification of medical datasets. KFFS consists of two phases. In the first phase, input spaces (features) of medical datasets have been transformed to kernel space by means of Linear (Lin) or Radial Basis Function (RBF) kernel functions. By this way, the dimensions of medical datasets have increased to high dimension feature space. In the second phase, the F-score values of medical datasets with high dimensional feature space have been calculated using F-score formula. And then the mean value of calculated F-scores has been computed. If the F-score value of any feature in medical datasets is bigger than this mean value, that feature will be selected. Otherwise, that feature is removed from feature space. Thanks to KFFS method, the irrelevant or redundant features are removed from high dimensional input feature space. The cause of using kernel functions transforms from non-linearly separable medical dataset to a linearly separable feature space. In this study, we have used the heart disease dataset, SPECT (Single Photon Emission Computed Tomography) images dataset, and Escherichia coli Promoter Gene Sequence dataset taken from UCI (University California, Irvine) machine learning database to test the performance of KFFS method. As classification algorithms, Least Square Support Vector Machine (LS-SVM) and Levenberg–Marquardt Artificial Neural Network have been used. As shown in the obtained results, the proposed feature selection method called KFFS is produced very promising results compared to F-score feature selection.
论文关键词:Feature selection,Kernel F-score feature selection,Least Square Support Vector Machine (LS-SVM),Levenberg–Marquardt Artificial Neural Network,Heart disease dataset,SPECT images dataset,Escherichia coli Promoter Gene Sequence dataset
论文评审过程:Available online 31 January 2009.
论文官网地址:https://doi.org/10.1016/j.eswa.2009.01.041