Using support vector machine with a hybrid feature selection method to the stock trend prediction

作者:

Highlights:

摘要

In this paper, we developed a prediction model based on support vector machine (SVM) with a hybrid feature selection method to predict the trend of stock markets. This proposed hybrid feature selection method, named F-score and Supported Sequential Forward Search (F_SSFS), combines the advantages of filter methods and wrapper methods to select the optimal feature subset from original feature set. To evaluate the prediction accuracy of this SVM-based model combined with F_SSFS, we compare its performance with back-propagation neural network (BPNN) along with three commonly used feature selection methods including Information gain, Symmetrical uncertainty, and Correlation-based feature selection via paired t-test. The grid-search technique using 5-fold cross-validation is used to find out the best parameter value of kernel function of SVM. In this study, we show that SVM outperforms BPN to the problem of stock trend prediction. In addition, our experimental results show that the proposed SVM-based model combined with F_SSFS has the highest level of accuracies and generalization performance in comparison with the other three feature selection methods. With these results, we claim that SVM combined with F_SSFS can serve as a promising addition to the existing stock trend prediction methods.

论文关键词:Support vector machine,Feature selection,Stock index

论文评审过程:Available online 20 February 2009.

论文官网地址:https://doi.org/10.1016/j.eswa.2009.02.038