A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique

作者:

Highlights:

摘要

This paper presents a novel intelligent diagnosis method based on multiple domain features, modified distance discrimination technique and improved fuzzy ARTMAP (IFAM). The method consists of three steps. To begin with, time-domain, frequency-domain and wavelet grey moments are extracted from the raw vibration signals to demonstrate the fault-related information. Then through the modified distance discrimination technique some salient features are selected from the original feature set. Finally, the optimal feature set is input into the IFAM incorporated with similarity based on the Yu’s norm in the classification phase to identify the different fault categories. The proposed method is applied to the fault diagnosis of rolling element bearing, and the test results show that the IFAM identify the fault categories of rolling element bearing more accurately and has a better diagnosis performance compared to the FAM. Furthermore, by the application of the bootstrap method to the diagnosis results it can testify that the IFAM has more capacity of reliability and robustness.

论文关键词:Feature selection,Modified distance discriminant technique,Improved fuzzy ARTMAP,Yu’s norm,Bootstrap method,Fault diagnosis

论文评审过程:Available online 22 April 2009.

论文官网地址:https://doi.org/10.1016/j.eswa.2009.04.021