A virtual metrology system for semiconductor manufacturing
作者:
Highlights:
•
摘要
Nowadays, the semiconductor manufacturing becomes very complex, consisting of hundreds of individual processes. If a faulty wafer is produced in an early stage but detected at the last moment, unnecessary resource consumption is unavoidable. Measuring every wafer’s quality after each process can save resources, but it is unrealistic and impractical because additional measuring processes put in between each pair of contiguous processes significantly increase the total production time. Metrology, as is employed for product quality monitoring tool today, covers only a small fraction of sampled wafers. Virtual metrology (VM), on the other hand, enables to predict every wafer’s metrology measurements based on production equipment data and preceding metrology results. A well established VM system, therefore, can help improve product quality and reduce production cost and cycle time. In this paper, we develop a VM system for an etching process in semiconductor manufacturing based on various data mining techniques. The experimental results show that our VM system can not only predict the metrology measurement accurately, but also detect possible faulty wafers with a reasonable confidence.
论文关键词:Virtual metrology,Fault detection,Data mining,Dimensionality reduction,Regression,Semiconductor manufacturing
论文评审过程:Available online 23 May 2009.
论文官网地址:https://doi.org/10.1016/j.eswa.2009.05.053