A fuzzy support vector regression model for business cycle predictions

作者:

Highlights:

摘要

Business cycle predictions face various sources of uncertainty and imprecision. The uncertainty is usually linguistically determined by the beliefs of decision makers. Thus, the fuzzy set theory is ideally suited to depict vague and uncertain features of business cycle predictions. Consequently, the estimation of fuzzy upper and lower bounds become an essential issue in predicting business cycles in an uncertain environment. The support vector regression (SVR) model is a novel forecasting approach that has been successfully used to solve time series problems. However, the SVR approach has not been widely applied in fuzzy forecasting problems. This study employs support vector regressions to calculate fuzzy upper and lower bounds; and presents a fuzzy support vector regression (FSVR) model for forecasting indices of business cycles. A numerical example of a business cycle prediction in Taiwan was used to demonstrate the forecasting performance of the FSVR model. The empirical results are satisfactory. Therefore, the FSVR model is an effective alternative in forecasting business cycles under uncertain circumstances.

论文关键词:Business cycle,Fuzzy set theory,Support vector regression

论文评审过程:Available online 20 February 2010.

论文官网地址:https://doi.org/10.1016/j.eswa.2010.02.071