The effect of linguistic hedges on feature selection: Part 2

作者:

Highlights:

摘要

The effects of linguistic hedges (LHs) on neuro-fuzzy classifier are shown in Part 1. This paper presents a fuzzy feature selection (FS) method based on the LH concept. The values of LHs can be used to show the importance degree of fuzzy sets. When this property is used for classification problems, and every class is defined by a fuzzy classification rule, the LHs of every fuzzy set denote the importance degree of input features. If the LHs values of features are close to concentration values, these features are more important or relevant, and can be selected. On the contrary, if the LH values of features are close to dilation values, these features are not important, and can be eliminated. According to the LHs value of features, the redundant, noisily features can be eliminated, and significant features can be selected. For this aim, a new LH-based FS algorithm is proposed by using adaptive neuro-fuzzy classifier (ANFC).In this study, the meanings of LHs are used to determine the relevant and irrelevant features of real-world databases. The experimental studies are shown the success of using the LHs in FS algorithm.

论文关键词:Linguistic Hedge (LH),Adaptive neuro-fuzzy classifier (ANFC),Feature selection (FS),Pattern recognition,Multi-dimensional data analysis

论文评审过程:Available online 24 February 2010.

论文官网地址:https://doi.org/10.1016/j.eswa.2010.02.115