Predicting the performance measures of an optical distributed shared memory multiprocessor by using support vector regression
作者:
Highlights:
•
摘要
Recent advances in the development of optical technologies suggest the possible emergence of optical interconnects within distributed shared memory (DSM) multiprocessors. The performance of these DSM architectures must be evaluated under varying values of DSM parameters. In this paper, we develop a Support Vector Regression (SVR) model for predicting the performance measures (i.e. average network latency, average channel waiting time and average processor utilization) of a DSM multiprocessor architecture interconnected by the Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus), which is a high-bandwidth, fiber-optic interconnection network. The basic idea is to collect a small number of data points by using a statistical simulation and predict the performance measures of the system for a large set of input parameters based on these. OPNET Modeler is used to simulate the DSM-based SOME-Bus multiprocessor architecture and to create the training and testing datasets. The prediction error and correlation coefficient of the SVR model is compared to that of Multiple Linear Regression (MLR) and feedforward Artificial Neural Network (ANN) models. Results show that the SVR-RBF model has the lowest prediction error and is more robust. It is concluded that SVR model shortens the time quite a bit for obtaining the performance measures of a DSM multiprocessor and can be used as an effective tool for this purpose.
论文关键词:Support vector regression,Multiprocessors,Distributed shared memory,Interconnection networks
论文评审过程:Available online 20 February 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.02.092