Weighted operation structures to program strengths of concrete-typed specimens using genetic algorithm

作者:

Highlights:

摘要

This study introduces weighted operation structures (WOS) to program engineering problems, in which each WOS adopts a fixed binary tree topology. The first WOS layer serves as the parameter input entrance. The target is produced at the eventual layer using both values and a mathematical formula. Each WOS element is operated by two front nodal inputs, an undetermined function, and two undetermined weights to produce one nodal output. This study proposes the novel concept of introducing weights into a WOS. Doing so provides two unique advantages: (1) achieving a balance between the influences of two front inputs and (2) incorporating weights throughout the generated formulas. Such a formula is composed of a certain quantity of optimized functions and weights. To determine function selections and proper weights, genetic algorithm is employed for optimization. Case studies herein focused on three kinds of concrete-typed specimen strengths: (1) concrete compressive strength, (2) deep beam shear strength, and (3) squat wall shear strength. Results showed that the proposed WOS can provide accurate results that nearly equal the results obtainable using the familiar neural network. The weighted formula, however, offers a distinct advantage in that it can be programmed for practical cases.

论文关键词:Weighted formula,Prediction,Concrete strength,Genetic programming

论文评审过程:Available online 5 July 2010.

论文官网地址:https://doi.org/10.1016/j.eswa.2010.06.034