Prediction of tropospheric ozone concentrations: Application of a methodology based on the Darwin’s Theory of Evolution
作者:
Highlights:
•
摘要
This study aims to predict the next day hourly average tropospheric ozone (O3) concentrations using genetic programming (GP). Due to the complexity of this problem, GP is an adequate methodology as it can optimize, simultaneously, the structure of the model and its parameters. It is an artificial intelligence methodology that uses the same principles of the Darwinian Theory of Evolution. GP enables the automatic generation of mathematical expressions that are modified following an iterative process applying genetic operations.The inputs of the models were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2) and O3, and some meteorological variables (temperature – T; solar radiation – SR; relative humidity – RH; and wind speed – WS) measured 24 h before. GP was also applied to the principal components (PC) obtained from these variables. The analysed period was from May to July 2004 divided in training and test periods.GP was able to select the most relevant variables for prediction of O3 concentrations. The original variables, T, RH and O3 measured 24 h before were considered significant inputs for prediction. The selected PC had also important contributions of the same variables and of NO2. GP models using the original variables presented better performance in training period and worse performance in test period when compared with the models obtained using PC. The results achieved using the GP methodology demonstrated that it can be very useful to solve several environmental complex problems.
论文关键词:Tropospheric ozone,Air pollution modelling,Genetic programming
论文评审过程:Available online 3 August 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.07.122